Tree-Structured Regional CNN-LSTM Model for Dimensional Sentiment Analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensional Sentiment Analysis Using a Regional CNN-LSTM Model

Dimensional sentiment analysis aims to recognize continuous numerical values in multiple dimensions such as the valencearousal (VA) space. Compared to the categorical approach that focuses on sentiment classification such as binary classification (i.e., positive and negative), the dimensional approach can provide more fine-grained sentiment analysis. This study proposes a regional CNN-LSTM mode...

متن کامل

YNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment Intensity Prediction

The sentiment analysis in this task aims to indicate the sentiment intensity of the four emotions (e.g. anger, fear, joy, and sadness) expressed in tweets. Compared to the polarity classification, such intensity prediction can provide more finegrained sentiment analysis. In this paper, we present a system that uses a convolutional neural network with long short-term memory (CNN-LSTM) model to c...

متن کامل

Tandem LSTM-SVM Approach for Sentiment Analysis

English. In this paper we describe our approach to EVALITA 2016 SENTIPOLC task. We participated in all the subtasks with constrained setting: Subjectivity Classification, Polarity Classification and Irony Detection. We developed a tandem architecture where Long Short Term Memory recurrent neural network is used to learn the feature space and to capture temporal dependencies, while the Support V...

متن کامل

Bidirectional Tree-Structured LSTM with Head Lexicalization

Sequential LSTM has been extended to model tree structures, giving competitive results for a number of tasks. Existing methods model constituent trees by bottom-up combinations of constituent nodes, making direct use of input word information only for leaf nodes. This is different from sequential LSTMs, which contain reference to input words for each node. In this paper, we propose a method for...

متن کامل

Conquering vanishing gradient: Tensor Tree LSTM on aspect-sentiment classification

Our project focus on the problem of aspect specific sentiment analysis using recursive neural networks. Different from the previous studies where labels exist on every node of constituency tree, we have only one label each sentence, which is only on the root node, and it causes a severe vanishing gradient problem for both RNN and RNTN. To deal with such problem, we develop a classification algo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE/ACM Transactions on Audio, Speech, and Language Processing

سال: 2020

ISSN: 2329-9290,2329-9304

DOI: 10.1109/taslp.2019.2959251